Tudor domains in proteins that interact with RNA

In the Drosophila embryo. the first cells to differentiate are pole cells, which arise from cytoplasmic organelles (polar granules) localized at the posterior pole of the egg. Here, the pole plasm contains two localized signals: a determinant that regulates abdominal development, and a second signal that regulates pole cell formation ${ }^{1}$. Mutations in posterior group
genes disrupt normal abdominal segmentalion and pole cell formation. The results of sequence analysis presented here show that a posterior group gene, fulor ${ }^{2}$, encodes a protein containing ten previously unrecognized repeats; these repeats will be termed 'tudor domains'. Tudor appears to pussess no other domains in audition to the ten repeats, and its molecular function remains unknown.

The Drosophila homeless gene product (hls), which is required for RNA localization during oogenesis ${ }^{3}$, contains a
single tudor domain (Figs 1, 2) in addition to a region homologous to yeast splicing factors that are members of the DEH family of RNA-dependent ATPases ${ }^{3}$. Mutations in the hls gene cause disruption of the transport and localization of specific mRNAs during oogenesis owing to changes in microtubule organisation ${ }^{3}$. The similarity of the hls sequence to splicing factors suggests that it might function during the processing of pre-mRNA whose products direct microtubule organization, which is required for mRNA transport ${ }^{3}$.

Consensus	F\% \%
P100/Caeel	
P100/Human	
AKAP149/Human	
Tud_Drome 1	
Tud_Drome 2	
Tud_Drome 3	
Tud_Drome 4	
Tud_Drome 5	
Tud_Drome 6	
Tud_Drome 7	
Tud_Drome 8	
Tud_Drome 9	
Tud_Drome 10	
His/Drome	
F16d3.2/Caeel	
C56g2.1/Caeel	CEA:SSIIS......ashl : QQPTHPSFASLPH:DMMGSSYG.(14). LL A PV.....
F32e10.5/Caeel 1	IP:D YPCE.......YYR: EHSMPTDIGLDPKREDR:KEN.TF.(22).TVA i CI.....
F32e10.5/Caeel 2	
YK65_Caeel 1	
YK65_Caeel 2	
F22D6.6/Caeel 1	
F22D6.6/Caeel 2	
2ndary Structure	
SMN/Hurnan	
SMNH/Human	
SMNH/Caeel	
Consensus	0
P100/Caeel	
P100/Human	
AKAP149/Human	
Tud_Drome 1	
Tud_Drome 2	
Tud_Drome 3	
Tud_Drome 4	
Tud Drome 5	
Tud_Drome 6	
Tud_Drome 7	
Tud_Drome 8	
Tud_Drome 9	
Tud_Drome 10	
His/Drome	
F16d3.2/Caeel	
C56g2.1/Caeel	
F32e10.5/Caeel 1	
F32e10.5/Caeel 2	
YK65_Caeel 1	
YK65_Caeel 2	
F22D6.6/Caeel 1	
F2206:6/Caeel 2	
2ndary Structure	eceeeeeeee EEEEEE eece eee
SMN/Human	DGCIYP TIASIDFRRET...CVIVITG: NREEQNL.. SDLLS....pICEVAN. NIEQN.QENE U18423 36-160
SMNH/Human	
SMNH/Caeel	

Figure 1
Multiple alignment of tudor domain sequences. Residues are coloured (hydrophobic: ACFILMYWY, in red; small: ACGPS, in green; acidic: DE, in brown; and, basic: KR, in dark blue) whose physicochemical characteristics are conserved in at least 16 of 22 sequences. Secondary structure, predicted ${ }^{10}$ with an expected accuracy greater than 82% (upper case) or 72% (lower case), is shown beneath the alignment (E / e denotes β-strand, H / h denotes α-helix); a consensus line is shown above the alignment ($h=$ hydrophobic, $\sigma=$ small residues). Other tudor repeats appear to be partially encoded by human (EMBL accession codes: W76301, H20629/Z45201/T52693/F07472, F13399/T77659, R13795/R14717), Zea mays (T23393) and Arabidopsis thaliana (T22348/T04365) expressed-sequence tags (ESTs). For comparison, regions of the human SMN gene product and homologues partially encoded by ESTs (human: T91668, Caenorhabditis elegans: D72470 and overlapping ESTs), are also shown. A BLASTX search ${ }^{11}$ with the tudorsimilar EST W76301 yields $p=10^{-2}$ when aligned with SMIN. Internal repeats in tudor were detected using REPRO ${ }^{12}$: 18 pairs of non-overlapping regions in tudor scored over 100 . including a 680-residue alignment scoring 400 (reneats 5-7 aligned with 8-10). These findings were complemented using dotplots ${ }^{13}$, BLASTP ${ }^{11}$ and MACAW ${ }^{14}$ self-comparisons (using MACAW, two-alignment blocks of the nine repeats yielded P-values of 8.8×10^{-16} and $9.6 \times 10^{-9}\left[\mathrm{~N}=2515^{9}\right]$). A profile constructed from an alignment of nine tudor domains and compared ${ }^{15}$ with databases, indicated the presence of single homologous domains in p100, F13d3.2, AKAP149 and hls (SWise scores 4998-5446, noise plateau leval < 4780). Two subsequence profiles demonstrated the presence of the remaining homologues, including the tenth repeat in tudor (tudor domain scores >4533, noise plateau <4480). By contrast to profile methods, MoST ${ }^{16}$ identified only human and C. elegans p100, and Drosophila hls as containing tudor domains ($\mathrm{P}<0.02$, using an alignment block of nine tudor repeats). Species: Caeel, C. elegans; and Drome, D. melanogaster.

Figure 2
Schematic representation of the domain organizations of selected tudor domain-containing proteins (approximately to scale). Red ovals represent tudor domains. Blue rectangles in p100 represent domains hemologous to staphylococcal nuclease ${ }^{17}$. Helicase motifs (I-VI and (a) are shown in Roman numerals; KH domains are typically single-stranded DNA- or RNA-binding motifs; RII represents a sequence that is predicted to bind regulatory subunits (RIl α and RIIB) of type llo cAMP-dependent protein kinase ${ }^{7}$; the black box represents a putative leucine-zipper motif7. The possibility ${ }^{17}$ of a p100 repeat-like domain fraginent in the carboxy-terminal region of p100 is indicated by a question mark. Species: Caeel, Caenorhabditis elegans; Drome, Drosophila melanogaster.

A single tudor domain is present in ploo (Ref. 4), a human nuclear protein that coactivates gene transcription mediated by the Epstein-Barr virus nuclear antigen 2 (EBNA 2) by simultaneously interacting with EBNA 2 and both subunits of transcription factor TFIIE; pl00 also binds single-stranded DNA ${ }^{4}$. Single tudor domains also occur in two sequences, a human A-kinase anchor protein (AKAP149) ${ }^{5}$ and Caenorhabditis elegans putative protein C56g2.1, each of which contains a KH domain with a potential for RNA-binding ${ }^{6}$. AKAP149 also contains a domain that binds regulatory subunits (RIl α and RII β) of the type ll α isoform of cAMP-dependent protein kinase (PKAlla) ${ }^{7}$. An alternatively spliced version of AKAP149 (S-AKAP84) participates in spermiogenesis, probably by facilitating orcuering of spermatid mitochondria ${ }^{7}$.

Finally, the product of the spinal muscular atrophy-determining gene survival motor neuron (SMN) ${ }^{8}$ scored highly in profile searches at levels similar to or higher than various tudor repeats; similar results (not shown) were obtained in reciprocal searches. The low similarity of SMN homologues to tudor domain sequences could indicate that these are not homologues. However, the perceived role of SMN in RNA metabolism ${ }^{9}$ and the apparently similar localizations of SMN and pl00 to unusual nuclear structures ${ }^{4.9}$ might suggest otherwise. Although a tudor domain in SMN remains a possibility, further evidence is essential to resolve this issue.

An insufficient amount of functional information concerning these proteins is currently available from which to ascribe putative function(s) to tudor domains.

However, identification of these apparently homologous domains in developmentally important proteins, including several with putative RNA-binding functions, hints at either an RNA-binding role or a protein-binding function during RNA metabolism and/or transport.

Acknowledgements

I would like to thank T. Gibson and J. Thompson (EMBL, Heidelberg, Germany) for supplying PROPLOT, and K. Talbot (University of Oxford, UK) for helpful discussions on SMN. C. P. P. is a Wellcome Trust Career Development Research Fellow and a member of the Oxford Centre for Molecular Sciences, which is supported by the UK EPSRC, BBSRC and the MRC.

References

1 St Johnston, D. and Nüsslein-Volhard. C. (1992) Cell 68, 201-219
2 Golumbeski, G. S., Bardsley, A., Tax. F. and Boswell, R. E. (1991) Genes Dev. 5. 2060-2070
3 Gillespie, D. E. and Berg, C. A. (1995) Genes Dev. 9, 2495-2508
4 Tong, X. et al. (1995) Mol. Cell. Bioi. 15. 4735-4744
5 Trendelenburg, G., Hummet, M., Riecken, E. O. and Hanski, C. (1996) Biochem. Biophys. Res. Commun. 225, 313-319
6 Rurd, C. G. and Dreyfuss, G. (1994) Science 265, 615-621
7 Lin, R-V., Mloss, S. S. and Rubin, C. S. (1995) J. Biol. Chem. 270, 27804-27811

8 Lefebure, S. et al. (1995) Cell 80, $455-165$
9 Liu, Q. and Dreyfuss, G. (1996) EMBO J. 15. 3555-3565
10 Rost, B. and Sander, C. (1993) J. Mol. Biol. 232, 584-599
11 Aitschul, S. F., Boguski, M. S., Gish, W. and Wootton, J. C. (1994) Nat. Genet. 6, 119-129
12 Heringa, J. and Argos, P. (1993) Proteins Struct. Funct. Genet. 17, 391-411
13 Thnmpson, J. D., Higgins, D. G. and Gibson, T. J. (1994) Comput. Applic. Biosci. 10. 19-30

14 Schuler, G. D., Altschul, S. F. and Lipman, D. J. (1991) Proteins Struct. Funct. Genet. 9. 180-190

15 Birney, E., Thompson, J. D. and Gibson, T. J. (1996) Nucleic Acids Res. 24, 2730-2739

16 Tatusov, R. L., Altschul, S. F. and Koonin, E. V. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 12091-12095
17 Ponting, C. P. Protein Sci. (in press)

CHRISTOPHER P. PONTING

Fibrinolysis Research Unit, University of Oxford, The Old Observatory, South Parks Road, Oxford. UK OX1 3RH.
Email: ponting@molbiol.ox.ac.uk

Next month in THBS

The evolution of ribonucleotide reduction Peter Reichard

Information and peer-review on the internet
Christopher G. Burd, Markus Babst and Scott D. Emr

$$
\begin{aligned}
& \text { Finding protein-binding sites in DNA - } \\
& \text { the next generation } \\
& \text { Kornelie Frech, Kersin Quandt and Thomas Werner }
\end{aligned}
$$

Chaperones get in touch: the hip-hop connetticm
Judith Frydman and Jörg Höhfeld
CH०००O hydrogeal loonding in blology
Markus C. Wahl and Muttaiya Sundaralingam
Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control Robert J. White

